The purpose of VA PBM Services drug monographs is to provide a focused drug review for making formulary decisions. Updates will be made when new clinical data warrant additional formulary discussion. Documents will be placed in the Archive section when the information is deemed to be no longer current.

FDA Approval Information

Description/Mechanism of Action

Belsomra (suvorexant) is a first-in-class orexin receptor antagonist. It is a CNS depressant and blocks the binding of wake-promoting neuropeptides orexin A and orexin B to the two orexin receptors (OX1R and OX2R) thus, altering the signaling (action) of orexin in the brain and suppressing the sleep-wake drive.

Indication(s) Under Review in this document (may include off label)

Treatment of insomnia, characterized by difficulties with sleep onset and/or sleep maintenance.

Dosage Form(s) Under Review

Tablets (round, film-coated): 5 (yellow), 10 (green), 15 (white), and 20 mg (white).

Suvorexant is a Schedule IV controlled-substance.

REMS

- REMS: Yes
- No REMS: No
- Postmarketing Requirements: No

Pregnancy

Category C: Based on animal data, may cause fetal harm.

Efficacy

- Three Phase III studies evaluating a range of suvorexant doses in adult patients with insomnia characterized by difficulty falling asleep (latency) and/or staying asleep (maintenance) provided both objective and subjective evidence for efficacy for doses of 15mg and greater compared to placebo.
- Efficacy for measures of sleep latency (subjective total sleep onset; sTSO) and objective latency of persistent sleep; (LPS) and sleep maintenance (subjective total sleep time; sTST) and objective wake after sleep onset; (WASO) was maintained for three months with suvorexant high dose (20-40mg) and low dose (15-30mg).
- Sleep Maintenance: Based on two pooled Phase III trials (3 months in duration), suvorexant high dose compared to placebo at month 3 added ~ 22 minutes of sTST (p<0.001) and reduced WASO by 26 minutes (p<0.001). Suvorexant low dose compared to placebo increased 16 minutes of sTST (p<0.001), and reduced WASO by 23 minutes at month 3, (p<0.001).
- Sleep Latency: Based on two pooled Phase III trials (3 months in duration), suvorexant high dose compared to placebo decreased STSO by ~11 minutes, (p<0.001) and LPS by 6 minutes at month 3, (p<0.05). Suvorexant low dose compared to placebo decreased STSO by 6 minutes (p<0.01) and decreased LPS by ~5 minutes at month 3, (p=NS).
- Efficacy for the 10mg suvorexant was determined by the exposure/response analysis from two Phase III studies and a Phase II dose finding study. The longest exposure to the 10 mg dose was in a phase II study, in which 62 non-elderly patients (<65 years of age) were exposed for one month. At 1 month, suvorexant 10mg reduced WASO and LPS (secondary endpoints) by 21 minutes (p≤.0001) and 2 minutes compared to placebo, (p=NS). Suvorexant 20mg was used longest by 20 patients in < 9 month trial.
- Suvorexant exposure is higher in women and obese patients defined as BMI ≥30kg/m².
- The concentration at 9 hours post-dose in elderly patients is ~15% greater than that in non-elderly adults. However, no meaningful differences in effectiveness were observed between patients ≥65 years and younger patients at the recommended doses.
- Due to the long half-life of 12 hours, suvorexant is a better option to consider in selective patients.
for sleep maintenance insomnia versus sleep initiation.

Safety

- The incidence of adverse effects is dose-related.
- In pooled data from 3-month Phase III trials and the first 3 months of a 12 month Phase III trial, the most common adverse events (≥ 2% greater than placebo) with high dose suvorexant was somnolence: 10.7%, (95% CI 11, 18); NNH 13.
- In pooled data from 3-month Phase III trials and the first 3 months of a 12 month Phase III trial, the most common adverse events (≥ 2% greater than placebo) with low dose suvorexant was somnolence 6.7%, (95% CI 17, 82); NNH 28.
- The incidence of somnolence with suvorexant 10 mg was 1.6% compared to 0.4% with placebo during a one year trial in patients with primary insomnia. In a trial with 22 healthy men (age 18-45 years), the incidence of somnolence the morning after evening administration was 4.5% vs. 0% with 10mg suvorexant compared to placebo.
- No discontinuation of suvorexant 10mg due to an adverse event in a Phase II trial was seen at one month (n=62). In other trials, the incidence of discontinuation due to an adverse reaction with suvorexant 15mg or 20mg was 3% compared to 5% placebo.
- The risk of next-day impairment, including impaired driving, is increased if suvorexant is taken with less than a full night of sleep remaining, a higher than recommended dose is taken, co-administered with other CNS depressants, or co-administered with other drugs that increase blood levels of suvorexant.
- No meaningful differences in safety were observed between patients 65 years and over and younger patients at the recommended doses to date.
- In completed clinical trials, there was no evidence for physical dependence with prolonged use. It is not associated with clinically meaningful rebound insomnia or withdrawal symptoms after discontinuation.
- No clinically significant respiratory depression in mild-to-moderate obstructive sleep apnea (OSA) and mild-to-moderate chronic obstructive pulmonary disease (COPD).
- Increased risk of suicidal ideation appears to be dose-related.
- Suvorexant was assessed for abuse liability with 40, 80, and 150 mg doses versus placebo, and zolpidem 15 and 30mg in recreational drug abusers. The effects of suvorexant and zolpidem were similar in the primary endpoint of “drug-liking” on a Visual Analogue Scale but zolpidem showed greater abuse liability in all other studied categories.
- No cases of severe cataplexy, although some reports of “weakness” were reported which might be considered mild cataplexy. The risk increases with higher doses.

CNS Depressant Effects:

- All CNS depressants can impair daytime wakefulness. Patients should be monitored for somnolence and CNS depressant effects. Impairment can occur in the absence of symptoms and may not be reliably detected by ordinary clinical exam. The CNS depressant effects may persist in some patients for up to several days after discontinuation.
 - **Driving and Next-Day Impairment:** Suvorexant can impair driving skills and may increase the risk of falling asleep while driving. Impaired driving performance in both male and females occurred when the 20mg dose was taken. Because of individual variation in sensitivity to the drug, patients taking suvorexant especially those using the 20 mg dose should be cautioned against next-day driving and other activities requiring full mental alertness. Drivers poorly predict their own driving impairment so even at dose of 10mg, there is still a chance of driving impairment.
 - **Concomitant Medications:** Co-administration with other CNS depressants (e.g., benzodiazepines, opioids, alcohol) increases the risk of CNS depression. Patients should be advised not to consume alcohol in combination with suvorexant due to the additive psychomotor impairment. Dosage adjustments of suvorexant and of concomitant CNS depressants may be necessary when administered together. Suvorexant is not recommended for use with strong CYP3A inhibitors and 5mg is the recommended dose when used with moderate CYP3A inhibitors. The use of suvorexant with other drugs to treat insomnia is not recommended.
 - **Abnormal Thinking and Behavioral Changes:** Discontinuation of suvorexant is advised for patients that experience any complex sleep behavior (e.g., sleep-driving, preparing and eating...
Potential Impact

- Suvorexant promotes a more “physiological sleep” unlike the other available agents used for the treatment of insomnia.
- Suvorexant has the indication for treatment of sleep onset and/or sleep maintenance, but due to its long-half life, the primary impact would be for sleep maintenance type of sleep disorders.
- Patient convenience:
 - Once daily dosing but it is recommended to be taken within 30 minutes of going to bed, with at least 7 hours remaining before the planned time of awakening.
 - Suvorexant does not appear to produce physical dependence or withdrawal.

Background

Purpose for review

- Recent FDA approval
- Issues to be determined:
 - Does the evidence show that suvorexant is effective as an agent for sleep maintenance and sleep onset?
 - Does suvorexant offer advantages over current VA National Formulary (VANF) agents?
 - What are the most appropriate patients for treatment with suvorexant?
 - Are there safety concerns in the Veteran population that may not have been addressed in the clinical trials?
 - What additional safety issues need to be considered with use of suvorexant?
 - Does suvorexant have specific characteristics best managed by the non-formulary process or criteria for use?

Other therapeutic options

<table>
<thead>
<tr>
<th>Formulary Alternatives (for sleep maintenance)</th>
<th>Other Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temazepam</td>
<td>Benzodiazepine (intermediate-acting); mean half-life ~8 hours; potential for tolerance and dependence; associated with other CNS related adverse events; morning sedation and cognitive hangover effects, abuse potential, and rebound insomnia on withdrawal. Scheduled C-IV, indicated for short term treatment of insomnia.</td>
</tr>
<tr>
<td>Zolpidem IR (not FDA approved for sleep maintenance)</td>
<td>Mean half-life 1.6 hours; Scheduled C-IV; Recommended dose is 5mg for women and 5 or 10mg for men, immediately before bedtime with at least 7-8 hours remaining before the planned time of awakening. Recommended lower dose in geriatric patients and patients with hepatic impairment with recommended dose is 5 mg for men and women. CNS depressant effects; abuse and dependence potential; next-day impairment; recommended not to drive a car or do things that require clear thinking the day after taking dose, available generic.</td>
</tr>
<tr>
<td>Non-formulary Alternative (if applicable)</td>
<td>Zolpidem Extended Release</td>
</tr>
<tr>
<td>Mean half-life 2.8 hours; Scheduled C-IV; recommended lower dose in women and in patients with hepatic impairment; administered immediately before bedtime with at least 7-8 hours remaining before planned time of awakening; CNS depressant effects; abuse and dependence potential; next-day impairment; recommended not to drive a car or do things that require clear thinking the day after taking dose.</td>
<td></td>
</tr>
<tr>
<td>Eszopiclone</td>
<td>Half-life 5-7 hours; may extend to 9 hours in older adults. Schedule C-IV. Moderate potential for drug-drug interactions (metabolized in part by CYP3A4). Unpleasant metallic taste; available generic.</td>
</tr>
<tr>
<td>Low dose doxepin</td>
<td>Tricyclic antidepressant. Indication for sleep maintenance only. No significant next-day residual effects.</td>
</tr>
</tbody>
</table>

Efficacy (FDA Approved Indications)\(^1\text{-}^3,5\text{-}^8,11\)

Literature Search Summary

A literature search was performed on PubMed/Medline (2010 to August 2015) using the search terms suvorexant, orexin receptor antagonism, and Belsomra. The search was limited to studies performed in humans and published in the English language. Reference lists of review articles and the manufacturer’s AMCP dossier and transcripts on
FDA web site were searched for relevant clinical trials. All randomized controlled trials published in peer-reviewed journals were included.

Review of Efficacy

Current available evidence is high quality for the use of suvorexant in patients with insomnia although the pivotal trials were conducted and funded by the manufacturer of suvorexant. (Refer to Appendix A).

The efficacy of suvorexant in patients with primary insomnia was investigated in three phase III clinical trials. Two of the trials were randomized, double-blind, placebo-controlled, parallel-group of 3 months in duration including objective and subjective assessments with an optional 3-month double-blind extension in Trial 1. Each trial enrolled adult patients (18-64 years) and elderly patients (≥ 65 years of age) who met DSM-IV-TR criteria for primary insomnia and a score ≥25 on the Mini Mental State Examinations (MMSE).

Eligibility for inclusion for both trials was assessed with subjective sleep measures in all patients and approximately 75% of the patients also underwent objective evaluation using polysomnography (PSG). Patients with only subjective sleep assessment via an electronic sleep diary questionnaire, recruited exclusively from Japan (Trial 1) and Asia Pacific (Trial 2), were randomized if the total sleep time (sTST) was < 6.5 hours and the time to sleep onset (sTSO) was ≥ 30 minutes for ≥4 of the 7 nights during screening. Patients screened objectively were randomized if the sleep latency of persistent sleep (LPS) was > 20 minutes and the mean wakefulness after persistent sleep onset (WASO) was ≥ 60 minutes. Patients in the PSG group were excluded if the apnea-hypopnea index or a periodic leg movement arousal index was > 10 (nonelderly) or < 15 in the elderly. Two doses were evaluated in each age group: high dose (HD), defined as 40 mg or 30 mg for adults, and low dose (LD), defined as 20 mg or 15 mg for the elderly. Randomization was to LD, HD, or placebo in a 2:3:3 ratio, respectively and a 1:1:1 ratio in those patients that only had subjective assessments. A prespecified multiplicity strategy was used for the two indications (sleep maintenance and onset) but differed between the two trials. The study was powered for high dose objective sleep maintenance endpoints.

Patient characteristics and baseline symptom severity were similar among treatment groups in both trials. Trial 1 randomized 1021 patients (mean age 56 years) of which 42% (n=429) were elderly. For Trial 2, 1019 patients (mean age 57, 41% elderly) were randomized. The percentage of females enrolled in Trial 1 and 2 were 63% and 66%, respectively. Obese patients (>30 kg/m²) made up 12% and 15% of the total population in Trial 1 and 2; respectively. In all groups, baseline score for all patients was 16 on the Insomnia Severity Index (ISI 0-28 scale).

The primary efficacy endpoints for suvorexant 40 mg and 30 mg were a change from baseline at months 1 and 3 for subjective and objective measures of sleep maintenance (sTST, WASO) and sleep onset (sTSO, LPS), respectively. Secondary end points were the same variables at week 1 for subjective measures and at night 1 for objective measures. These variables were assessed for suvorexant 20 mg and 15 mg as secondary endpoints for Trial 1 and exploratory end points for Trial 2. Other diary end points for both trials were considered exploratory endpoints and included the following: number of awakenings (sNAW); wake time after sleep onset (sWASO); sleep quality (sQAL); and refreshed upon awakening (sFRESH).

Responder rating scales (exploratory endpoints for both trials) included: Insomnia Severity Index (ISI); Clinical Global Impression-Severity scale (CGI-S); Patient Global Impression-Severalty scale (PGI-S) (Trial 2 only); Clinical Global Impression-Improvement scale (CGI-I); Patient Global Impression-Improvement scale (PGI-I).

Results: (Refer to Table 1 for details)

Sleep Maintenance: Primary Endpoints (sTST, WASO)

- High dose suvorexant vs. placebo was statistically significant for both primary endpoints at all time points; week1/night1, month 1, and month 3 in both trials, (all p <0.001)
- Low dose suvorexant vs. placebo was statistically significant for both primary endpoints at all time points in both trials. The NNT to achieve 15% improvement in mean sTST with LD suvorexant based on pooled results from Trials 1 and 2 is 9, 8, and 13 at week 1, month 1, and month 3, respectively. (Refer to Table 2 for details)
Sleep Latency: (sTSO, LPS)
- High dose suvorexant vs. placebo was statistically significant in improving sleep latency at all time points in both trials except LPS at month 3 in Trial 2.
- Low dose suvorexant vs. placebo was statistically superior for LPS at all time points in Trial 1 except month 3 in Trial 2. For sTSO, LD suvorexant improved at all time points however beyond month 1, the differences observed at month 3 were not tremendously different than month 1. The p values for sTSO were nominally positive compared to placebo (p <0.04) in both trials at month 3. It should be noted that because the study was underpowered for sleep latency outcomes, non-significant findings at some time points for LD is not unexpected. The FDA did rule that because the objective findings for sleep latency (LPS) were positive in Trial 1 and in combination with two nominally subjective sTSO findings in Trial 1 and 2 at month 3, there was sufficient evidence to support the efficacy of low doses for sleep latency. The NNT to achieve 15% improvement in mean sTSO with LD suvorexant compared to placebo based on pooled results from Trial 1 and 2 is 8, 12, and 26 at week 1, month 1, and month 3, respectively. (Refer to Table 2)

Secondary Outcomes:
- High dose suvorexant vs. placebo
 - sWASO was statistically significant throughout all time points in both trials.
 - sQUAL (patient’s perceptions of sleep) significantly improved in Trial 1 week 1 (p<0.001), month 1 (p < 0.001), and month 3 (p < 0.05). Significant results for sQUAL were also seen for all assessment times in Trial 2.
 - sFRESH was significantly improved with for both week 1, and month 1 in both trials (both p<0.01) but only month 3 in Trial 2, (p<0.01).
 - sNAR was not statistically different at any time points in both trials.
 - Clinical and patient global impression scales statistically improved at all time points in both trials.

Low dose suvorexant vs. placebo
- sWASO statistically improved throughout all time points except at month 1, and month 3 in Trial 1 and week 1 in Trial 2.
- sQUAL was statistical significant throughout all time points except at month 3 in Trial 1.
- sFRESH was statistical significant for all time points except at month 3 in Trial 1 and week 1 in Trial 2.
- sNAR was not significant at any time points in Trial 1 or Trial 2.
- Clinical and patient global impression scales improved at all time points in both trials.

Table 1: Two Phase 3 Studies: Primary Sleep Maintenance and Sleep Onset Endpoints

<table>
<thead>
<tr>
<th>Sleep Maintenance</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective: WASO, min</td>
<td>Month 1</td>
<td>Month 3</td>
</tr>
<tr>
<td>HD vs. Placebo</td>
<td>-38.4 (-45.5,-32.3)</td>
<td>-26.3 (-33.5,-19.2)</td>
</tr>
<tr>
<td>LD vs. Placebo</td>
<td>-30.5 (-37.3,-23.7)</td>
<td>-16.4 (-24.4,-8.3)</td>
</tr>
<tr>
<td>Subjective: sSTS, min</td>
<td>Night 1</td>
<td>Month 1</td>
</tr>
<tr>
<td>HD vs. Placebo</td>
<td>21.6(14.5,27.4)</td>
<td>19.6(12.0,27.1)</td>
</tr>
<tr>
<td>LD vs. Placebo</td>
<td>13.6(6.9,20.2)</td>
<td>16.3(7.9,24.8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sleep Onset</th>
<th>Objective: LPS, min</th>
<th>Trial 1</th>
<th>Trial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD vs. Placebo</td>
<td>-10.3(-15.0,-5.5)</td>
<td>-11.2(-16.3,-6.1)</td>
<td>-9.4(-14.6,-4.3)</td>
</tr>
<tr>
<td>LD vs. Placebo</td>
<td>-9.6(-14.9,-4.3)</td>
<td>-10.3(-16.0,-4.6)</td>
<td>-8.1(-13.8,-2.3)</td>
</tr>
<tr>
<td>Subjective: sTSO, min</td>
<td>Night 1</td>
<td>Month 1</td>
<td>Month 3</td>
</tr>
<tr>
<td>HD vs. Placebo</td>
<td>-5.7(-9.7,-1.6)</td>
<td>-7.4(-12.3,-2.5)</td>
<td>-8.4(-12.9,-4.0)</td>
</tr>
<tr>
<td>LD vs. Placebo</td>
<td>-5.6(-10.2,-1.1)</td>
<td>-5.4(-10.9,-0.0)</td>
<td>-5.2(-10.2,-3.3)</td>
</tr>
</tbody>
</table>

Updated October 2015
Updated version may be found at www.pbm.va.gov or PBM INTRANet

Portions of these documents or records, or information contained herein, which resulted from Pharmacy Benefits Management Drug Usage Evaluation and Utilization Review activities, may be considered confidential and privileged under the provisions of 38 U.S.C. 5705 and its implementing regulations. In such cases, this material shall not be disclosed to anyone without authorization as provided for by that law or its regulations. The statute provides for fines up to $20,000 for unauthorized disclosure.
Herring et al. conducted a phase II dose-finding two-period cross-over study examining the efficacy of suvorexant 10 mg, 20 mg, 40 mg, and 80 mg. A total of 254 adults with primary insomnia were randomized with ~60 patients in each dose arm. Co-primary efficacy end points were objective sleep efficiency (defined as TST/time in bed in minutes [fixed at 480 for this study] multiplied by 100) on night 1 and end of week 4. Secondary endpoints were WASO and LPS. All suvorexant doses showed significant improvement in sleep efficiency vs. placebo from the first night compared with placebo and maintained this treatment difference to the end of the study. All doses compared to placebo significantly reduced WASO at both time points, (p<0.001). The multiplicity strategy resulted in no dose being positive for LPS. However, when an analysis of LPS was performed between the first and second study periods to minimize the carryover effect) and applying the multiplicity testing strategy, the 40 mg and 80 mg dose significantly improved LPS when compared to placebo at night 1, while the 20 mg resulted in a significant improvement at week 4. The 10 mg dose showed a significant improvement in objective sleep maintenance and for objective sleep latency when a post-hoc sensitivity analyses was performed. Many of the exploratory patient-reported outcomes including sTST, sTSO, sQUAL, sFRESH were negative for both the 10 mg and 20 mg doses at week 1 and 4 when compared to placebo but again, this study was not powered for those endpoints. Some evidence of subjective benefit was noted from the scores of insomnia severity index for all doses; however the p-values were not positive for suvorexant 10 mg. (Refer to Appendix B for more details.)

Long-Term Efficacy:
A randomized, placebo-controlled, parallel group Phase III trial in 781 patients with primary insomnia (mean age 62) and a BMI > 30 kg/m2 in 23% of the total population was conducted to assess the safety and tolerability of suvorexant for up to year, while assessing the efficacy for sTST and TSO over the first month of treatment as secondary outcomes. Most patients were mild-to-moderate insomnia at baseline. Adult patients received suvorexant 40mg while elderly patients (≥65) received 30mg or placebo at a 2:1 ratio for 1-year with a subsequent 2-month randomized discontinuation phase in which patients on suvorexant either continued suvorexant or were abruptly switched to placebo. Patients on placebo remained on placebo. (Refer to Safety section for long term findings.)

Over the first month, suvorexant showed significant improvement in sTST (p<0.0001) and sTSO (p= 0.0002) compared to placebo. The improvements were maintained through the 1-year period. Suvorexant was better than placebo on all subjective sleep measures at month 1 and month 12, except for sNAW at month 1. Suvorexant was also better than placebo at both time points on the ISI, CGI-S, PGI-S, CGI-I, and PGI-I.

Summary of Efficacy:
When four double-blind, randomized, placebo-controlled trials evaluating suvorexant for primary insomnia were included in a meta-analysis11, suvorexant was found to be superior to placebo, with regard to two primary efficacy equilibrium.
subjective outcomes: sTST (measure of sleep maintenance): WMD -20, (95% CI -25.01, -15.30), (1889 patients, 3 trials) and sTSO (measure of sleep latency): WMD -762; (95% CI -11.03, -4.21), (1889 patients, 3 trials). (Refer to Table 1 for specific outcomes with higher vs. lower doses of suvorexant.) The efficacy of suvorexant 10mg was determined by the exposure/response analysis from two Phase III studies and a Phase II dose finding study. The longest exposure to the 10 mg dose was in a phase 2 study, in which 62 non-elderly patients (<65 years of age) were exposed for one month.

Safety

Potential Off-Label Use

- No published studies at the time of this document were found using suvorexant in other off-label conditions. Other dual orexin receptor antagonists have been evaluated in painful diabetic neuropathy, migraine prophylaxis, and as an adjunctive therapy in major depressive disorder.

Warnings/Precautions

- **Daytime somnolence:** Risk of impaired alertness and motor coordination, including impaired driving can occur; the risk increases with dose escalation. Caution patients taking 20mg against next-day driving and other activities requiring complete mental alertness. The risk of impairment can occur even when fully awake.
- **Need to evaluate for co-morbid diagnoses:** Reevaluate if insomnia persists after 7 to 10 days of treatment.
- **Nighttime “sleep-driving”** and other complex behaviors while out of bed and not fully awake can occur. The risk increases with dose escalation, with use of CNS depressants, and with alcohol.
- **Depression:** Worsening of depression or suicidal thinking may occur. The risk increases with dose escalation.
- **Compromised respiratory function:** The effect on respiratory function should be considered.
- **Sleep paralysis, hypnagogic/hypnopompic hallucinations** and cataplexy-like symptoms: The risk increases with dose escalation.

Safety Considerations

Adverse effects are strongly dose-related. Key safety issues include:

- **Daytime somnolence/excessive daytime sleepiness:** driving impairment
 - The incidence of somnolence is dose related. In the dose ranging study, the incidence of somnolence was 0.4% for placebo, 1.6% for 10 mg, and 4.9% for 20 mg suvorexant.
- **Excessive daytime sleepiness (EDS)**
 - In the 3 month trial, the incidence of EDS was 0.2%, 0.6% and 1.1% (n=14) for placebo, low dose (LD) suvorexant, respectively. Ten of the fourteen HD patients (71%) discontinued suvorexant due to EDS. In the 12 month trial, 11 suvorexant HD (0.9%), and 2 placebo (0.2%) patients discontinued due to EDS.
 - Driving impairment: Next day suvorexant blood levels in adults after nighttime administration with 15 mg dose overlaps with blood levels from the 20 mg dose causing driving impairment in the formal driving study. Drivers poorly predict their own driving impairment. Remember evaluating the average impairment of all patients is not sensitive to clinically important impairment in individuals. Drivers may be impaired but not know it. Patients should be cautioned even with the 10 mg dose and advised not to drive the next morning.
- **Suicide risk**
 - The risk of suicidal ideation was evident mainly with the high dose. At doses 30-40mg, there was a 7-fold increase in suicidal ideation vs. placebo. For low dose suvorexant (15-20 mg), an insufficient number of events are available to determine the relative risk with confidence. Suvorexant studies generally excluded patients taking antidepressants and patients with active depressive symptoms or suicidal ideation. There is no experience with the use of this agent in this population and an effort to identify patients with suicidal ideation before and while being treated with suvorexant should be made.
• Unconscious nighttime activity
 o Two cases have been reported; one case with suvorexant 40 mg and one case with 30 mg suvorexant. No cases with placebo were reported. It is not clear that these events represent a drug-related risk.
• Narcolepsy-like events other than daytime somnolence: cataplexy, hypnagogic hallucinations, and sleep paralysis
 o Sleep paralysis and hypnagogic/hypnopompic hallucinations appears to be dose-related. It is not likely to cause physical harm but potentially very distressing to patients. Again, using the lowest dose effective is highly recommended.
• Abuse:
 o In human abuse potential study, the “drug like” of suvorexant was similar to that of zolpidem. In clinical trials, euphoria and other adverse events suggestive of abuse were observed infrequently.

SAFETY[^1-3, 7-8, 10-11]

Long-Term:
During 1-year of treatment, more serious adverse events were reported in the placebo group (6.6%) vs. the suvorexant group (5.2%). However, one or more drug-related adverse events occurred more often in the suvorexant group (34.9%) vs. the placebo group (20.5%), (95% CI 7.8, 20.6). The three most common adverse events with suvorexant vs. placebo at one year were somnolence 13.2% vs 2.7%, (95% CI 6.8, 14.1), fatigue 6.5% vs 1.9%, (95% CI 1.6, 7.4) and dry mouth 5.0% vs. 1.6%, (95% CI 0.7, 5.9), respectively. (Refer to Table 3 for the NNH).

Discontinuation due to drug-related adverse events was slightly higher in the suvorexant group at 8.3% compared to 4.7% with placebo, (95% CI 1.5, 7.4). The adverse event with the highest incidence of discontinuation compared to placebo was somnolence (4% vs 1%), respectively. The incidence of excessive daytime sleepiness defined as a more persistent daytime sleepiness than typical next-day residual somnolence was 2.5% (n=13) compared to 0.8% (n=2), (95% CI 0.5, 3.6) in the suvorexant vs. placebo groups, respectively.

Table 3: Common adverse events[^*] of LD and HD Suvorexant vs. placebo and NNH (pooled results)

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Suvorexant 15 or 20mg vs placebo (NNH (95% CI)</th>
<th>Suvorexant 30 or 40mg vs placebo (NNH (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somnolence</td>
<td>28 (17-82)</td>
<td>13 (11-18)</td>
</tr>
<tr>
<td>Headache</td>
<td>74 (ns)</td>
<td>158 (ns)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>469 (ns)</td>
<td>Rate lower than placebo</td>
</tr>
<tr>
<td>Abnormal dreams</td>
<td>118 (ns)</td>
<td>90 (48-769)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>103 (ns)</td>
<td>613 (ns)</td>
</tr>
<tr>
<td>Dry Mouth</td>
<td>218 (ns)</td>
<td>71 (39-361)</td>
</tr>
<tr>
<td>Nausea</td>
<td>Rate lower than for placebo</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>211 (ns)</td>
<td>49 (30-139)</td>
</tr>
<tr>
<td>Upper respiratory infection</td>
<td>222 (ns)</td>
<td>101 (ns)</td>
</tr>
</tbody>
</table>

[^*]≥2% incidence in LD Suvorexant and frequency greater for suvorexant than for placebo in Trial 1 and 2 plus the first 3 months of long-term (12 month) Phase 3 trial; CI confidence interval; NNH, number needed to harm; ns, not significant; HD= Suvorexant 20/40mg; LD= Suvorexant 15/30mg

Rebound Insomnia (exploratory endpoint): No evidence of rebound was seen for any measure in patients during the first three nights of the discontinuation phase. No statistically significant differences were seen with regard to worsening of sTST or sTSO for each night or for any of the three nights for the prespecified comparison of the suvorexant-placebo to the placebo-placebo group. However, the proportion of patients with rebound insomnia on all comparison were numerically greater with return of symptoms similar in severity in the suvorexant-placebo group compared with the placebo-placebo group during the 2-month discontinuation phase, however most patients retained some degree of improvement during the 2-month discontinuation phase. Authors stated that the return of symptoms following suvorexant discontinuation could be a return of the underlying insomnia disorder, rebound or withdrawal effects, or a combination of all of these mechanisms. In a meta-analysis[^11], with three combined trials (n=1486), the rebound insomnia measured by sTST at day 1-3 for switching suvorexant to placebo group versus switching placebo to placebo was RR 1.20, (95% CI 1.10, 1.40); p=0.005; NNH = 11.

Withdrawal Symptoms (exploratory endpoint): Using the Tyrer Withdrawal Symptom Questionnaire, there were no statistically significant differences observed between the suvorexant/suvorexant and suvorexant/placebo groups for the percent of patients with worsening of ≥3 symptoms during each of the first 3 nights or across the first 3 nights of the discontinuation phase. No evidence of withdrawal symptoms was noted at day 1, day 2, day 3, or days 1-3 when a meta-analysis[^11] was conducted of the three combined trials.
Next-day residual: In a randomized, double-blind, placebo-controlled, 4-period crossover PSG study conducted in healthy young men (n=22), no evidence of next-day residual effect for suvorexant 10mg was seen on simple reaction time (SRT), choice reaction time (CRT), and digit symbol substitution test (DSST) evaluated at 10 hour post dose compared to placebo.

Next-day daytime function:
In a phase 1 study in which next-day (9 hour post dose) memory and balance were evaluated after a single dose of 40mg, there was a statistically significant decrease in word recall, and a statistically significant increase in body sway following a single dose of suvorexant 20 mg or 40 mg. Psychomotor performance measured by DSST showed no clear change from suvorexant. No increase incidence of falls was observed. The incidence of falls was essentially the same among all treatment groups in controlled trials. The falls that occurred in the drug-treated patients all appeared to have been related to identifiable non-drug related causes. The effect on memory also appears to be small and with uncertain clinical meaningfulness.

Driving:
Two similar 4 period cross-over studies evaluating highway driving behaviors were conducted. One study evaluated the driving in 24 healthy subjects (> 65 years old) receiving 8 consecutive days of suvorexant 20 mg, 40 mg or placebo. and The other study evaluated driving in 28 healthy subjects (ages 21-64 year old) with suvorexant 15 mg, 30 mg or placebo for 8 consecutive days. Driving (one hour duration) was evaluated in the morning about 9 hours after nighttime dose, on day 2 and 9, after 8 days of dosing. Blood levels were measured at 11 hours after drug ingestion. The primary endpoint was the mean standard deviation of lane position (SDLP), a measure of the ability of the driver to maintain a constant position of the car in the driving lane. Zolpidone 7.5mg was used as an active control. Because the FDA considers the mean SDLP not sensitive to clinically important impairment in individuals, a symmetry analysis was conducted and compared the proportion of patients that worsened by a threshold of 2.4cm (the level of impairment generally accepted as representing that of 0.05% blood ethanol) to the proportion that improved by that amount. A positive correlation between suvorexant blood level and SDLP impairment, on day 2 for both suvorexant 20 mg and 40 mg and on day 9 for suvorexant 40mg was observed although a clear cut-off blood level with no impairment was not noted. In the dose ranging study, suvorexant blood levels the morning after the 10 mg dose averaged about 0.2 to 0.3 µM and up to 0.4 µM in adult patients which raises some concern than even after the 10 mg dose, some adults might experience clinically meaningful driving impairment. Of note, the driving study in elderly was not positive by symmetry analysis for either dose at either day.

Adverse Reactions

<table>
<thead>
<tr>
<th>Common adverse reactions</th>
<th>Trials > 3 months:</th>
</tr>
</thead>
<tbody>
<tr>
<td>With suvorexant 15 mg or 20 mg, the most common adverse reaction (reported in ≥ 5% of patients and at least twice the placebo rate) was somnolence (suvorexant 7% vs. placebo 3%). Adverse events with an incidence ≥2% included headache, somnolence, and dizziness. The overall incidence of somnolence in treated patients was 11% for high dose vs. 7% in low dose.</td>
<td></td>
</tr>
</tbody>
</table>

| Incidence (%) of Common Adverse Events, 3, 6 and 12 month controlled Trials |
|-----------------------------|----------------|----------------|
| 3 month trials | 6 month | 12 month |
| Sorelence | Placebo N=1025 | LD N=493 | HD N=1291 | Placebo N=767 | LD N=483 | HD N=1291 | Placebo N=1025 | LD N=483 | HD N=1291 |
| Severe | 3 | 7 | 11 | 3 | 3 | 3 | 3 | 3 | 3 |
| Somnolence <65 year old | 3 | 5 | 9 | 3 | 8 | 12.5 | 4 | 3 | 10 |
| >65 year old | 3 | 8 | 12.5 | 4 | 3 | 10 | 4 | 3 | 10 |
| Men | 2 | 6.5 | 11 | 2 | 6.5 | 11 | 2 | 6.5 | 11 |
| Female | 6 | 7 | 7 | 6 | 8 | 7 | 8 | 6 | 7 | 7 |
| Headache | 2 | 4 | 6 | 2 | 4 | 6 | 2 | 4 | 6 |
| Fatigue | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| Dry Mouth | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| Abnormal Dreams | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| URI | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| Nausea | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| Nightmares | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| Diarrhea | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| Cough | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
At doses of 15 mg or 20 mg (n=493), the incidence of somnolence was higher in females (9%) than in males (3%) and in adults (8%) vs. elderly (5%) although the elderly received a lower dose per protocol.

Incidence of Somnolence by BMI Categories:

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>LD</th>
<th>HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Obese (BMI < 25)</td>
<td>2.2%</td>
<td>7.4%</td>
<td>11.0%</td>
</tr>
<tr>
<td>Over-weight (BMI 25-30)</td>
<td>3.0%</td>
<td>7.2%</td>
<td>8.9%</td>
</tr>
<tr>
<td>Obese (BMI >30)</td>
<td>5.3%</td>
<td>1.8%</td>
<td>13.4</td>
</tr>
</tbody>
</table>

The incidence of adverse effects (≥2%) in women vs. men: headache, abnormal dreams, dry mouth, cough, and upper respiratory tract infection.

Nonfatal serious adverse events were uncommon, with fewer serious adverse events in the suvorexant arms compared with placebo. There was one serious adverse event of suicidal ideation in one patient with a past history of suicidal ideation and remote history of suicide attempt taking 40 mg suvorexant.

Over 6 months of controlled trial data, 0.6% and 2.1% of suvorexant LD (n=493) and placebo (n=767) patients, respectively, experienced a serious adverse event. No single adverse event occurred more than once in the suvorexant LD group.

Drug Interactions

Drug-Drug Interactions

Consult the prescribing information prior to use of suvorexant for potential drug interactions.

- Suvorexant is a weak inhibitor of CYP3A and the intestinal P-glycoprotein (P-gp) transporter following consecutive multiple-dose administration. The major route of metabolism for suvorexant is CYP3A.

Concomitant use of suvorexant with:

- **Strong CYP3A Inhibitors** is not recommended: Exposure (AUC) of suvorexant is increased about 3-fold by strong CYP3A inhibitors (e.g., ketoconazole, itraconazole, clarithromycin, nefazodone, ritonavir, saquinavir, nelfinavir, indinavir, boceprevir, telaprevir).

- **Moderate CYP3A Inhibitors**: the recommended dose of suvorexant is 5 mg and can be increased to 10 mg maximum if needed. Exposure of suvorexant is increase about 2-fold by moderate CYP3A inhibitors (e.g., ciprofloxacin, diltiazem, erythromycin fluclozole, grapefruit juice, verapamil). If 10mg dose is used, patients should refrain from driving the next day.

- **Strong CYP3A Inducers** can substantially decrease suvorexant exposure. The efficacy of suvorexant may be reduced (e.g., rifampin, carbamazepine, phenytoin).

- **Warfarin or oral contraceptives**: No clinical significant pharmacokinetic interactions were observed following the co-administration of suvorexant.

- **CNS Depressants**: Dosage adjustment of suvorexant and/or the other CNS depressant may be necessary.

- **Midazolam** (a sensitive CYP3A substrate): Midazolam levels may slightly increase with concomitant administration of suvorexant.

- **Digoxin**: Digoxin levels may slightly increase with concomitant administration of suvorexant due to inhibition of intestinal P-gp. Digoxin concentrations should be monitored as clinically indicated.
Drug-Lab Interactions
In a dose ranging study, non-elderly patients treated with suvorexant for up to one month with various doses had a strongly dose-related increase in cholesterol levels (10mg: ↑ 1.2 mg/dL; 20mg: ↑ 2.3 mg/dL; 40mg, ↑ 3.1 mg/dL; and 80mg, ↑ 6 mg/dL). Cholesterol levels were not measured in phase III studies. When using the recommended dose of 10mg no increased monitoring of cholesterol levels would be warranted.

For the three combined phase III studies, the incidence of a predefined reduction in absolute neutrophil count (ANC) to less than ≤ 37% of normal occurred in 1.0% (n=5/484) with suvorexant low dose (15-30 mg), 0.5% (n=6/1281) with higher doses (20-40mg), and 0.1% (n=1/1009) with placebo. Three patients had preexisting mild or moderate neutropenia. Five of the eleven suvorexant patients return to baseline laboratory tests were not documented. The lowest neutrophil count was 0.2 x 10^3 cells/μL. The investigators noted that the low neutrophil count occurred sporadically over the course of treatment, without apparent worsening or infection. However, because follow-up testing did not occur for about half of the affected patients, neutropenia due to drug or chance is not known.

Risk Evaluation:
As of October, 2015

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentinel event advisories</td>
</tr>
<tr>
<td>Look-alike/sound-alike error potentials</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NME Drug Name</th>
<th>Lex-Comp</th>
<th>First DataBank</th>
<th>ISMP</th>
<th>Clinical Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suvorexant 5, 10 15, 20 mg tab</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Suboxone Resuvo</td>
</tr>
<tr>
<td>Belsomra</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Belviq Soma Unisom</td>
</tr>
</tbody>
</table>

Other Considerations
- Suvorexant needs to be dispensed with an FDA approved patient Medication Guide. Suvorexant is a controlled substance (Schedule-IV).
- Potential abuse of suvorexant was evaluated in a phase I randomized, double-blind, placebo and active comparator-controlled, 6 way crossover study. Single doses of suvorexant 40 mg, 80 mg, 150 mg and 2 doses of zolpidem (15 mg and 30 mg) in 73 recreational polydrug users were evaluated. Suvorexant showed greater abuse potential than placebo as measured by the Drug Liking VAS. Both suvorexant and zolpidem showed greater abuse potential than placebo on other positive measure of drug abuse potential.
- Suvorexant has not been compared to other drugs approved to treat insomnia, so differences in safety or effectiveness between suvorexant and other insomnia medications are not known.
- No information is available on switching patient to suvorexant from current hypnotic therapies.
- No information is available on the use of suvorexant in patients who fail to respond to current hypnotic therapies.
- All the efficacy and safety Phase III trials enrolled generally healthy patients. There is minimal data in concomitant disease or use with drugs commonly used in actual clinical population.

Dosing and Administration
- Refer to Drug-Drug Interaction Section
- The recommended dose is 10 mg, taken no more than once per night and within 30 minutes of going to bed, with at least 7 hours remaining before the planned time of awakening. The maximum recommended dose is 20 mg once daily. However, due to inter-individual variation in both pharmacokinetics and pharmacodynamics, and with the potential of serious dose-related adverse effects, the lowest dose effective to treat an individual’s symptoms should be used.
- An increased suvorexant exposure in women vs. men and in obese (>30 kg/m2) vs. non-obese patients has been noted. Approximately a doubling of suvorexant exposure in obese females vs. non-obese and a 20% increase in blood levels the morning after dosing at steady state has been shown. Knowing the increased exposure in these...
populations, using doses higher than the initial starting dose of 10 mg warrants clinical judgment and shared patient-centric decision.

- Time to effect may be delayed if taken with or soon after a meal.

Special Populations (Adults) 1-3

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elderly</td>
</tr>
<tr>
<td>Pregnancy</td>
</tr>
<tr>
<td>Lactation</td>
</tr>
<tr>
<td>Females and Males of Reproductive Potential</td>
</tr>
<tr>
<td>BMI and Gender</td>
</tr>
<tr>
<td>Respiratory Impairment: COPD/OSA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Renal Impairment</td>
</tr>
</tbody>
</table>
| **Hepatic Impairment** | No dose adjustment is required in patients with mild or moderate hepatic impairment. However, in an open-label phase I pharmacokinetic trial, 8 adult subjects with moderate hepatic impairment (Child-Pugh score of 7 to 9) and 8 healthy adults received a single dose of suvorexant 20 mg. The half-life was longer in the hepatic impairment subjects at 19.1 compared to healthy subjects at 14.7. Somnolence occurred in 75% (6/8) of the
hepatic impairment subjects and 63% (5/8) of the control health subjects. Suvorexant is not recommended in patients with severe hepatic impairment (Child-Pugh C) as it has not been studied in this patient population.

Pharmacogenetics

- No data identified

Projected Place in Therapy

The National Institutes of Health estimates that roughly 30% of the general population complains of sleep disruption, and approximately 10% have associated symptom of daytime functional impairment. Of interest, in the military service, insomnia has been reported to be as high as 41% in service members deployed to combat and 25% in noncombat areas. Sleep disturbances are common in Veterans with PTSD, TBI, and pain. A recent published study indicates that more than half of the all Veterans (n=917) had clinically significant insomnia symptoms at their initial encounter at VA San Diego Healthcare System between March 2012-August 2013 as measured by the Insomnia Severity Index (ISI). In the subsample without military sexual trauma (n=843), 23.6% had moderate insomnia (ISI 15-21) while 9.6% reported severe insomnia as indicated by the ISI scores of 22-28.

Suvorexant has a different mechanism of action than other approved agents for insomnia. The most common side effect is somnolence. Based on clinical trials, suvorexant offers another option in selected patients whose condition fails to respond or are unable to take other sedative hypnotics such as benzodiazepine and nonbenzodiazepines. Suvorexant long half-life (~12 hours) makes it useful in patients with sleep maintenance insomnia more so than sleep latency. Due to drug-drug interactions, longer exposure in women and obese patients (>30kg/m²) including concern with driving impairment the next day even at the recommended dose, in selected patients, suvorexant may be an alternative to consider.

References

3. Suvorexant. Drugs@FDA. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/204569Orig1s000TOC.cfm.

Prepared October 2015. Contact person: Janet H. Dailey, PharmD, National PBM Clinical Pharmacy Program Manager
Appendix A: GRADEing the Evidence

Designations of Quality

<table>
<thead>
<tr>
<th>Quality of evidence designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Evidence includes consistent results from well-designed, well-conducted studies in representative populations that directly assess effects on health outcomes (2 consistent, higher-quality randomized controlled trials or multiple, consistent observational studies with no significant methodological flaws showing large effects).</td>
</tr>
<tr>
<td>Moderate</td>
<td>Evidence is sufficient to determine effects on health outcomes, but the number, quality, size, or consistency of included studies; generalizability to routine practice; or indirect nature of the evidence on health outcomes (1 higher-quality trial with > 100 participants; 2 higher-quality trials with some inconsistency; 2 consistent, lower-quality trials; or multiple, consistent observational studies with no significant methodological flaws showing at least moderate effects) limits the strength of the evidence.</td>
</tr>
<tr>
<td>Low</td>
<td>Evidence is insufficient to assess effects on health outcomes because of limited number or power of studies, large and unexplained inconsistency between higher-quality studies, important flaws in study design or conduct, gaps in the chain of evidence, or lack of information on important health outcomes.</td>
</tr>
</tbody>
</table>

Table 1: Phase II: Efficacy and Safety of Suvorexant: Dose Ranging Trial

<table>
<thead>
<tr>
<th>Trial Purpose</th>
<th>Inclusion/Exclusion/Endpoints</th>
<th>Treatment/Assessment</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suvorexant vs. placebo on night 1 and end of week 4</td>
<td>Baseline: Mean age 44.4 ± 11 years; female 58%; Caucasian 70%; mean BMI 26.2 (kg/m²); average Insomnia Severity Index total score was 17, (moderately severe). There was a similar distribution of gender, race, age, and BMI among the treatments. Average Sheehan Disability Scale total score of 9, corresponding to mild disruption of work/social/family life by disease symptoms.</td>
<td>Table 1: Summary of efficacy of objective PSG of suvorexant vs. placebo on night 1 and 4 weeks and residual effects.</td>
<td>Table 3: Summary of adverse events of suvorexant 10 and 20 versus placebo</td>
</tr>
</tbody>
</table>

Appendix B:

Table 1. Summary of adverse events of suvorexant 10 and 20 versus placebo

<table>
<thead>
<tr>
<th>AE=Adverse events, S=suvorexant, P=placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conclusion: All doses were more effective than placebo for primary endpoint of SE and for the secondary endpoint of WASO at night 1 and end of week 4.</td>
</tr>
<tr>
<td>Post-hoc analysis of LPS using period 1 data to minimize carry-over effect resulted in mean change from baseline for night 1: 10 mg = -19.1, 20 mg = -17.4, 40 mg = -31.0, and 80 mg = -22.3. For end of week 4: 10 mg = -20.2, 20 mg = -24.6, 40 mg = -15.7, and 80 mg = -19.6. (data not shown)</td>
</tr>
<tr>
<td>Potential carryover effect for LPS for patients who received placebo in period 1 had no further improvement in LPS when they received suvorexant in period 2. If patients received suvorexant in period 1, improvement in LPS did not diminish in period 2 even though patients received placebo in period 2. Analyses of the first period</td>
</tr>
</tbody>
</table>

October 2015

Updated version may be found at www.pbm.va.gov or vaww.pbm.va.gov

Portions of these documents or records, or information contained therein, which resulted from Pharmacy Benefits Management Drug Usage Evaluation and Utilization Review activities, may be considered confidential and privileged under the provisions of 38 U.S.C. 5705 and its implementing regulations. In such cases, this material shall not be disclosed to anyone without authorization as provided for by that law or its regulations. The statute provides for fines up to $200,000 for unauthorized disclosure.
Suvorexant

Endpoints:

- **Efficacy:**
 - Primary: Sleep efficiency (SE) defined as total sleep time divided by time in bed (fixed at 480) x 100 on night 1 and at the end of week 4.
 - Secondary: (trial 1)
 - WASO: duration of wakefulness after persistent sleep onset to lights on and LPS (duration of time from lights off to persistent sleep onset) measured on night 1 and at the end of week 4.

Exploratory Results:

- **WASO, LPS (trial 2)**
 - Sleep diary measures: sWASO, sQUAL, SFRESH, sNAW.
 - Rating scale end points (ISI, CGI-severity, PGI-Severity, PGI-Improvement).

Table 2: Summary of efficacy of subjective of suvorexant vs. placebo on night 1 and 4 weeks and residual effects

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Placebo</th>
<th>N = 240</th>
<th>Night 1</th>
<th>10 mg</th>
<th>N = 60</th>
<th>20 mg</th>
<th>N = 59</th>
<th>50 mg</th>
<th>N = 60</th>
<th>10 mg End of 4 week</th>
</tr>
</thead>
<tbody>
<tr>
<td>WASO</td>
<td>480</td>
<td>100</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>SQUAL</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>SFRESH</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>sNAW</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Note: For only two sequences that included the 10 mg dose revealed no significant effects on either Night 1 or week 4 for the 10 mg dose. The effect of the 10 mg dose on LPS in the first period when pooling all placebo group was as follows:

- Night 1: 10 mg vs. placebo -21.7 (p=0.011); Month 1: 10 mg vs. placebo -20.6 (p=0.013)

Note:

- Increase in TST (exploratory outcome) increased compared to placebo from 22 to 62 minutes depending on the dose and evaluation night. The increase was mainly attributable to greater time spent in REM and stage 2 sleep.
- When evaluating the percentage of TST spent in each sleep rather than minutes, only REM sleep showed a nominally significant increase vs. placebo for all suvorexant doses.
- Suvorexant 40 and 80 mg doses were superior to placebo for sTST and sTST.
- Suvorexant 10 and 20 mg had similar adverse event rate vs placebo; although the incidence of somnolence was higher with 20mg compared to 10mg.
- Suvorexant 20, 40 and 50mg showed greater improvement of insomnia compared with placebo as assessed by Insomnia Severity Index.
- Median suvorexant AUC is 5 microM/hr which is similar to the lowest AUC which showed effectiveness at all plasma levels.

Quality Assessment: Fair

Study Critique: Small number of patients; funding provided and study conducted by manufacture of suvorexant

Strength: obvious dose related incidence of adverse events with increasing dose

Weakness: reduced power to adequately determine suvorexant effects on sleep onset, may not be applicable to VA general population

October 2015

Updated version may be found at www.pbm.va.gov or www.pbm.va.gov

Portions of these documents or records, or information contained herein, which resulted from Pharmacy Benefits Management Drug Usage Evaluation and Utilization Review activities, may be considered confidential and privileged under the provisions of 38 U.S.C. 5705 and its implementing regulations. In such cases, this material shall not be disclosed to anyone without authorization as provided for by that law or its regulations. The statute provides for fines up to $20,000 for unauthorized disclosure.
Appendix C: Acquisition Prices and Cost Considerations

CONFIDENTIAL

VA INTERNAL USE ONLY

THIS PAGE WILL BE REMOVED PRIOR TO POSTING

Prices of Suvorexant as of 6-14-15

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>(BIG4) Price/Day/Patient ($)</th>
<th>Price/Year/Patient ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suvorexant</td>
<td>5mg</td>
<td>6.28</td>
<td>2,292.20</td>
</tr>
<tr>
<td>Suvorexant</td>
<td>10mg</td>
<td>6.24</td>
<td>2,277.6</td>
</tr>
<tr>
<td>Suvorexant</td>
<td>15mg</td>
<td>6.24</td>
<td>2,277.60</td>
</tr>
<tr>
<td>Suvorexant</td>
<td>20mg</td>
<td>6.24</td>
<td>2,277.60</td>
</tr>
</tbody>
</table>

Note: Prices shown in this internal, draft document may include additional discounts available to VA. This information is considered strictly confidential and must not be shared outside of VA.